TRANS FUSIMO

Training and learning software in the field of focused ultrasound therapy of the liver

Daniel Demedts¹, Sabrina Haase¹, Sébastien Muller², Jan Strehlow¹, Thomas Langø², Tobias Preusser^{1,3} ¹ Fraunhofer MEVIS, Bremen, Germany; ² SINTEF, Trondheim, Norway; ³ Jacobs University, Bremen, Germany

Vision

FUS in moving organs can be realized by updating the focal spot to follow the target motion (steered FUS). A training and learning software can help unexperienced physicians and can assess the efficiency and effectiveness of the treatment.

Communication via database

While the treatment system uses the real hardware APIs from the MR device and the HIFU device, the training and learning system uses emulated APIs for those hardware components and is thus independent of any hardware. Both systems can be connected via the database. They are using the same application core.

FUS treatment of liver without motion tracking and beam steering

Without steering the energy is distributed to a larger volume.

Database for relevant clinical cases

Relevant clinical cases can be stored and accessed later for training and learning from multiple sites. All communication and data are encrypted. The database exploration utility allows to upload or download data.

Connection

Treatment software

Training and learning software

Training and learning software

The training and learning software can be used for

- training on how to use the treatment software
- training of unexperienced physicians using mathematical simulation methods to predict the outcome

Login: dandem		DB: tftest Connect
Patients	Ses	sions
ID YOB Description	ID	Date Description
59 1974 Sick	69	Mi Dez 16 2015 Test Session
60 1974 Sick	70	Mi Dez 16 2015 Another Test
61 1974 Dummy condition	71	Mi Dez 16 2015 Third Test Session
62 1974 Dummy condition		
63 1974 Dummy condition		
64 1974 Dummy condition		
65 1974 Dummy condition		
66 1974 Dummy condition		
67 1974 Unknown condition		
68 1974 Unknown condition		
69 2015 Phantom		
Insert New Patient	Inse	rt New Session Download Selected Session
Status: Connected to DB		

Database communication channel

- learning from previously performed procedures
- analyse the effectiveness and efficiency of performed treatments
- exploring new algorithms for tracking, temperature monitoring and motion compensation on existing data

Results

The training and learning software offers a variety of indications for use. The main advantage is that no hardware is needed to use the training and learning system. All hardware components are emulated with appropriate software modules. The **software** to be used in clinical studies during the TRANS-FUSIMO project is **new and advanced** to the personel. The training and learning system enables the operator rehearse before treating patients in the same interface and functionality as in real-world scenarios. The **database** itself can also be used to upload **cases from** different sites to learn about the performance of FUS procedures as well as the effect on improved tracking, temperature and motion compensation algorithms.

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement n°611889.

www.trans-fusimo.eu