Course  /  06/21/2017  -  06/23/2017

Course on MR Measurement of Perfusion and Capillary Exchange

The course on MR Measurement of Perfusion and Capillary Exchange provides a deeper insight into the biophysics of perfusion and with the focus on MRI modalities it gives an overview of modern technologies for perfusion imaging.

This course is designed to provide deeper insight into the biophysics of perfusion, the consequential requirements to the data acquisition and MR methodology for qualitative and quantitative data evaluation. After an overview of and introduction to the basics of physiology and the clinical role of perfusion imaging, the general theory behind perfusion quantification is explained. An overview of existing perfusion imaging techniques is given.

An introduction to arterial spin labeling (ASL) techniques and associated data processing strategies is presented, emphasizing the theory behind quantification approaches. Differences in quantification of continuous and pulsed ASL are discussed, as well as the influence of partial volume effects and prolonged transit time.

Perfusion MRI using contrast agents will concentrate on dynamic susceptibility contrast (DSC) MRI as well as dynamic contrast enhanced (DCE) MRI. The differences in tracer kinetics are explained and demonstrated. The theory of relaxation enhancement induced by the contrast agent is discussed.

As an integral part, the course will also include a substantial amount of time that will be spent on exercises, which are intended to enhance the understanding of basic and advanced topics and will be performed, e.g. by means of simulations under guidance of the lecturers.

The course is designed to provide a compact understanding and a stable foundation for scientists who intend to enhance their knowledge with respect to perfusion-weighted MR imaging or who wish to get involved with method development of perfusion measurements. This course is not focused on a particular organ, although for ASL the brain is still the organ in which it is applied most often.